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Slant path average intensity of finite optical beam
propagating in turbulent atmosphere
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The average intensity of finite laser beam propagating through turbulent atmosphere is calculated from
the extended Huygens Fresnel principle. Formulas are presented for the slant path average intensity
from an arbitrarily truncated Gaussian beam. The new expressions are derived from the modified von
Karman spectrum for refractive-index fluctuations, quadratic approximation of the structure function,
and Gaussian approximation for the product of Gaussian function and Bessel function. It is shown that
the form of average intensity is not a Gaussian function but a polynomial of the power of the binomial
function, Gaussian function, and the incomplete gamma function. The results also show that the mean
irradiance of a finite optical beam propagating in slant path turbulent atmosphere not only depends on
the effective beam radius at the transmitting aperture plane, propagation distance, and long-term lateral
coherence length of spherical wave, but also on the radius of emit aperture.
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Wireless laser communication between the ground and
satellite has advantages in terms of bandwidth, reduced
interference, and having small and lightweight equip-
ment compared with the conventional communication
systems. Therefore wireless optical telecommunication
systems have become one of the most widely used alter-
natives among broadband access applications. However,
during light waves propagating through atmospheric tur-
bulence, random fluctuations in atmospheric refractive
index introduce random phase perturbations across the
propagating wave front. After propagating some dis-
tances from the point of introduction, these phase pertur-
bations develop into random intensity fluctuations, beam
broadening, and beam wandering. Since beam spread
and its associated on-axis irradiance degradations are of
practical interest, many analyses have been reported[1−9].
Andrews et al.[1,2] studied the beam spread of zero-
order Gaussian beams in weak regimes of atmospheric
fluctuations. Yura[4] investigated the short-term average
optical-beam spread in atmospheric turbulence based on
the extended Huygens-Fresnel principle and the short-
term average mutual coherence function of a spherical
wave. Tavis et al.[9] gave the short-term average ir-
radiance profile of a focused laser beam transmitting
through a homogeneous-isotropic atmosphere. However,
the closed-form solution for the mean irradiance of Gaus-
sian beams propagating in all regimes of atmospheric tur-
bulence has not been obtained[2,7]. The previous analy-
sis of the ensemble-averaged irradiance was based on the
assume that the mean irradiance sketch of a light propa-
gation in turbulence is Gaussian function[5,7,10].

This paper develops the expressions for the ensemble-
averaged irradiance based on the extended Huygens-
Fresnel principle, quadratic approximation of the struc-
ture function, the modified von Karman spectrum for
refractive-index fluctuations, and Gaussian approxima-
tion for the product of Gaussian function and Bessel func-
tion.

It is shown that for optical propagation in an inhomo-
geneous, no absorbing medium, sufficiently small scat-
tering angle, the field at an observation point P1 due to
a Gaussian amplitude aperture disturbance U0 (r1) can
be written as[7]

U (P1) =
−ik
2π

∫
�

G (P1, r1)U0(r1)d2r1, (1)

where k = 2π/λ is the wavenumber, λ is the wavelength,
r1 is the coordinate vector in the aperture plane,

∑
is the area of the circular aperture (see Fig. 1(a)). The

Fig. 1. (a) Gaussian beam propagation in turbulent atmo-
sphere; (b) geometry of slant path propagation. W0 is the
effective beam radius in transmitting aperture plane (or beam
waist), R is the radius of emit aperture, Z is the propagation
distance, and θ is the zenith angle.
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amplitude aperture disturbance U0 (r1) is given by

U0(r1) = U0 exp
[
− r21

2W 2
0

− ikr21
2F0

]
, |r1| ≤ R, (2)

where F0 is the radius of curvature, W0 is the effective
beam radius in transmitting aperture plane, U0 is the
constant amplitude of beam, and 2R is the diameter of
the circular aperture.

The term G (P1, r1) is the field at P1 of a spheri-
cal wave propagating due to the atmospheric turbulence
from a unite point source at r1, i.e.,

G (P1, r1) = exp (ik |P1 − r1| + ψ) / |P1 − r1| , (3)

where ψ (p1, r1, z) = χ (p1, r1, z) + iS (p1, r1, z)
[11] is the

random part of the complex phase of a spherical wave
propagating in the turbulent atmosphere from the point
(r1) to the point (p1, z). And we define p1 as the nor-
mal from the z axis of symmetry to the observation point
P1. By Eqs. (1), (2), and the paraxial approximation, we
obtain[7]

U(p1, z) =
−ik
2πz

exp (ikz)

×
∫
�

exp

[
ik (p1 − r1)

2

2z
+ ψ(p1, r1, z)

]
U0 (r1) d2r1, (4)

and

U(p1, z)U∗(p2, z)

=
(

k

2πz

)2 ∫∫
�

exp
(

ik
2z

)[
(p1 − r1)

2 − (p2 − r2)
2
]

× exp (ψ(p1, r1, z) + ψ(p2, r2, z)∗)

×U0 (r1)U∗
0 (r2) d2r1d2r2. (5)

The mutual coherence function which is the ensemble
average of Eq. (5) over the different realizations of the
refractive index field can be written as[9]

Γ(p1,p2, z)

=
(

k

2πz

)2 ∫∫
�

exp
(

ik
2z

)[
(p1 − r1)

2 − (p2 − r2)
2
]

×exp [−Dψ (p1 − p2; r1 − r2) /2]

×U0 (r1)U∗
0 (r2) d2r1d2r2, (6)

where Dψ (p1 − p2; r1 − r2) is the wave-structure func-
tion.

We introduce sum and difference coordinates

p = p1 − p2, q = (p1 + p2)/2,

ρ = r1 − r2, r = (r1 + r2) /2. (7)

Hence

Γ(p,q, z)

=
(

k

2πz

)2 ∫
exp

{(
ik
2z

)
[(r − q) · (ρ − p)]

}

exp
[− 1

2Dψ (p,ρ, z)
]
U0

(
r + 1

2ρ
)
U∗

0

(
r − 1

2ρ
)
d2ρd2r,(8)

where

U0

(
r + 1

2ρ
)
U∗

0

(
r − 1

2ρ
)

= U0U
∗
0 exp

[
−r

2 + 1
4ρ

2

W 2
0

− ikr · ρ
F0

]
. (9)

And the wave structure function can be written as[8]

Dψ (p,ρ, z) = 8π2k2z

×
1∫

0

∞∫
0

κφ (κ) [1 − J0 (|(1 − ξ)q + ξρ|κ)]dκdξ. (10)

The average intensity at p1 is given for an arbitrary
aperture disturbance by

I(p1, z) =
(

k

2πz

)2

I0

×
∫∫
�

exp
{
−ik

(
1
F0

− 1
z

)
r · ρ − ik

z
p1 · ρ

}

× exp
[− 1

2Dψ (ρ, z)
]
exp

[
−r

2 + 1
4ρ

2

W 2
0

]
d2ρd2r, (11)

where I0 = U0U
∗
0 . By the Bessel relationship J0 (z) =

1
2π

2π∫
0

exp [-iz cosα]dα, Eq. (11) becomes

I(p1, z) = (k/z)2 I0
∫∫
�

J0 [kηrρ/z]J0 [kp1ρ/z]

× exp
[
−r

2 + 1
4ρ

2

W 2
0

]
exp

[− 1
2Dψ (ρ, z)

]
ρdρrdr, (12)

where η = (z/F0 − 1). Based on the modified von Kar-
man spectrum[7]

φn(κ, L0, l0) = 0.033C2
n exp

(−κ2/κ2
m

) (
κ2

0 + κ2
)−11/6

,

where κ0 = 2π/L0, κm = 5.92/l0, L0 and l0 are the
outer scale and inner scale of atmospheric turbulence,
respectively. C2

n is the refractive index structural char-
acteristic. One of the most widely used models is the
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Hufnagel-Velley model described by[12]

C2
n(zξ cos θ) = 0.00594 (υ/27)2

(
zξ cos θ × 10−5

)10
× exp (−zξ cos θ/1000)

+2.7 × 10−16 exp (−zξ cos θ/1500)

+C2
n(0) exp (−zξ cos θ/100) ,

where z is the propagation distance measured from the
transmitter z0 along a slant path to the satellite z1 in me-
ters, υ = 2.1 m/s is the root-meat-square (RMS) wind
speed, and C2

n(0)A = 1.7 × 10−14 or C2
n(0) = 3 × 10−13

m−2/3 is the refractive index structural characteristic of
ground, θ is the zenith angle (see Fig. 1(b)). And un-
der the quadratic approximation[8], the long-term wave
structure function can be written as

DΨLT (ρ, z)

≈ 2

⎛
⎝1.45k2 sec θ

z1∫
z0

C2
n (z)

(
z1 − z

z1 − z0

)5/3

dz

⎞
⎠

6/5

×
[
1 − 0.715κ1/3

0

]
ρ2 = 2

ρ2

ρ̃2
0

, (13)

where ρ2
0 =

(
1.45k2 sec θ

z1∫
z0

C2
n (z)

(
z1−z
z1−z0

)5/3

dz

)−6/5

is

the long-term lateral coherence length of a spherical wave

and ρ̃2
0 = ρ2

0

[
1 − 0.715κ1/3

0

]−1

. The short-term wave

structure function can be written as[4]

DψST (ρ, z) = 2
[
1 − (ρ0/2W0)

1/3
]
ρ2/ρ̃2

0. (14)

By Eqs. (11) and (13), we have the long-term average
intensity

I(p1, z) = (k/2z)2 I0
∫∫
�

J0

[
kηrρ

z

]
J0

[
kp1ρ

z

]

× exp
[
−r

2 + 1
4ρ

2

W 2
0

]
exp

[
−ρ

2

ρ̃2
0

]
dρ2dr2. (15)

Dre’ge et al. have shown that the Bessel function in
the product ℘ = exp

(−a2
effρ

2
)
J0 (kp1ρ/z) can be ap-

proximated as Gaussian function[10], i.e.,

exp
(−a2

effρ
2
)
J0 (kp1ρ/z)

≈ exp
(−a2

effρ
2
)
exp

[
−k2p2

1ρ
2/ (Kz)2

]
, (16)

where K ≈ 1.5257. Substituting Eq. (16) into Eq. (15)

gives

I(p1, z) =
(
k

2z

)2

I0

∫∫
�

exp

(
−
((

kηρ

zK

)2

+
1
W 2

0

)
r2

)

×J0

[
kp1ρ

z

]
exp

[
−
(

1
4W 2

0

+
1
ρ̃2
0

)
ρ2

]
dρ2dr2. (17)

The integral in Eq. (17) for r can be analytically eval-
uated to obtain

I(p1, z) =
(
k

2z

)2 ∫
�

I0((
kηρ
zK

)2

+ 1
W 2

0

)

×
[
1 − exp

(
−
((

kηρ

zK

)2

+
1
W 2

0

)
R2

)]

×J0

[
kp1ρ

z

]
exp

[
−
(

1
4W 2

0

+
1
ρ̃2
0

)
ρ2

]
dρ2. (18)

Substituting Eq. (16) into Eq. (18) gives

I(p1, z) =
(
k

2z

)2 ∫
�

I0((
kηρ
zK

)2

+ 1
W 2

0

)

×
[
1 − exp

(
−
((

kηρ

zK

)2

+
1
W 2

0

)
R2

)]

×exp

[
−
(

1
4W 2

0

+
1
ρ̃2
0

+
[
kp1

zK

]2)
ρ2

]
dρ2. (19)

By the relationship e−x = 1−x+x2/2!−x3/3! · · · , Eq.
(19) can be written as

I(p1, z) =
(
k

2z

)2

R2I0

×
∫
�

∞∑
j=1

(−1)j+1

[((
kηρ
zK

)2

+ 1
W 2

0

)
R2

]j
(j)!

× exp

[
−
(

1
4W 2

0

+
1
ρ̃2
0

+
[
kp1

zK

]2)
ρ2

]
dρ2. (20)

Exchanging the integral and sum, we obtain

I(p1, z) =
(
k

2z

)2

R2I0

∞∑
j=1

(−1)j+1

j!

×
∫
�

[((
kηρ

zK

)2

+
1
W 2

0

)
R2

]j

× exp

[
−
(

1
4W 2

0

+
1
ρ̃2
0

+
[
kp1

zK

]2)
ρ2

]
dρ2. (21)
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Changing variables
[((

kηρ
zK

)2

+ 1
W 2

0

)
R2

]
= x and

ρ2 =
(
x− R2

W 2
0

)(
zK
kRη

)2

gives

I(p1, z) =
(
K

2η

)2

I0

∞∑
j=1

(−1)j+1

j!

×
∫
xj exp

[
−
(

1
4W 2

0

+
1
ρ̃2
0

+
[
kp1

zK

]2)

(
x− R2

W 2
0

)(
zK

kRη

)2
]

dx. (22)

Using the reference integral
R∫

0

xj exp (−μx) dx = μ−j−1γ (j + 1, μR) , (23)

we have the new expression of mean irradiance

I(p1, z) =
(
K

2η

)2

I0

exp

[(
1

4W 2
0

+
1
ρ̃2
0

+
[
kp1

zK

]2)(
zK

kW0η

)2
]

×
∞∑
j=1

(−1)j+1

j!

[(
1

4W 2
0

+
1
ρ̃2
0

+
[
kp1

zK

]2)(
zK

kRη

)2
]−j−1

×γ
⎛
⎝j + 1,

(
1

4W 2
0

+
1
ρ̃2
0

+
[
kp1

zK

]2)
R

√(
kηR

zK

)2

+
1
W 2

0

⎞
⎠ ,

(24)

where γ (j, x) is the incomplete gamma function.
In order to gain an insight into the relationship between

the long-term average intensity and the parameters (W0,
z, ρ̃0, and R) of atmospheric image system, we discuss
the focused beam propagation in the slant path turbu-
lent atmosphere. In the focused beam propagation case,
η = 0, Eq. (21) or (22) becomes

I(p1, z) =
(
k

2z

)2

W 2
0 I0

{
1 − exp

[
−
(
R2

W 2
0

)]}

×
∫
R

exp

[
−
(

1
4W 2

0

+
1
ρ̃2
0

+
[
kp1

zK

]2)
ρ2

]
dρ2.

After integration, we obtain a new approximated ex-
pression for the long-term average intensity

I(p1, z) =
W 2

0 I0

{
1 − exp

[
−
(
R2

W 2
0

)]}
W 2
e

(
1 +

[
2p1
WeK

]2)

×
{

1 − exp

[
−W 2

e

(
1 +

[
2p1

WeK

]2)
k2R2

4z2

]}
,(25)

where W 2
e =

(
2z
k

)2 ( 1
4W 2

0
+ 1

ρ̃20

)
is the long-term beam

spread for the focused beam[4]. When R �W0, Eq. (25)
is approximately equal to

I(p1, z) =
W 2

0 I0

W 2
e

(
1 +

[
2p1
WeK

]2) . (26)

Under the case 4p2
1 � W 2

eK
2 and to the lowest order

in(2p1/WeK)2, Eq. (25) takes the approximation form

I(p1, z) =
W 2

0 I0
W 2
e

(
1 −

[
2p1

WeK

]2)

∼ W 2
0 I0
W 2
e

exp

(
−
[

2p1

WeK

]2)
. (27)

Equation (26) shows that in limit 4p2
1 � W 2

eK
2 and

R � W0, apart a constant number 2/K, the long-term
average intensity is approximately given by the well know
Gaussian function[2,4].

In conclusion, in this paper we have used the extended
Huygens-Fresnel principle to obtain an expression for the
mean irradiance in a random medium. We have noted,
on the basis of the quadratic approximation of the wave-
structure function, the modified von Karman spectrum
for refractive-index fluctuations, and Gaussian approxi-
mation for the product of Gaussian function and Bessel
function, that our solution do not agree with a Gaussian
intensity distribution function. Our results show that the
mean irradiance of a finite optical beam propagating in
slant path turbulent atmosphere not only depends on the
W0, z, and ρ̃0 but also on the emit aperture R.

Y. Zhang’s e-mail address is zyxlxy30@hotmail.com.
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